causalinference.utils package module, K=3, unobservables=False, **kwargs)

Function that generates data according to one of two simple models that satisfies the unconfoundedness assumption.

The covariates and error terms are generated according to

X ~ N(mu, Sigma), epsilon ~ N(0, Gamma).

The counterfactual outcomes are generated by

Y0 = X*beta + epsilon_0, Y1 = delta + X*(beta+theta) + epsilon_1.

Selection is done according to the following propensity score function:

P(D=1|X) = Lambda(X*beta).

Here Lambda is the standard logistic CDF.

N: int

Number of units to draw. Defaults to 5000.

K: int

Number of covariates. Defaults to 3.

unobservables: bool

Returns potential outcomes and true propensity score in addition to observed outcome and covariates if True. Defaults to False.

mu, Sigma, Gamma, beta, delta, theta: NumPy ndarrays, optional

Parameter values appearing in data generating process.


A tuple in the form of (Y, D, X) or (Y, D, X, Y0, Y1) of observed outcomes, treatment indicators, covariate matrix, and potential outomces.